If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2=31
We move all terms to the left:
d^2-(31)=0
a = 1; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·1·(-31)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{31}}{2*1}=\frac{0-2\sqrt{31}}{2} =-\frac{2\sqrt{31}}{2} =-\sqrt{31} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{31}}{2*1}=\frac{0+2\sqrt{31}}{2} =\frac{2\sqrt{31}}{2} =\sqrt{31} $
| 17.5/1=1.5/x | | 7n-38=-3(-5n+4)-2 | | 14y-14=4y | | 15−5(4c−7)=10 | | -11v=-154 | | -1.2(10-5x)=14x-52 | | 57=-10z+8 | | x-4+x-4+x=16 | | –8m=–56 | | -3a+20=2a | | 1000000=150x | | 3(j+18)-10=8 | | y=800+90 | | –612=c−901 | | x-16=-3x+22 | | -2/5+y=9 | | 12x+8+3x=-22 | | 14x+11+10x+3=158 | | –15y+4=–14−18y | | 45=4b+13b= | | 24w+18=16w+6 | | F(5)-F(4)=3n-7 | | -8(y-1)+2(y-12)=-7y-8(y+12) | | p/(-2)-10=-20 | | r4−1=2 | | -6(w-5)+(w-7)=8w+8(w-5) | | .75x+.05(8-x)=0.10(-122) | | r-(-11)=20 | | 2x+6x-23+x=148 | | 5(7+9)-2(1-r)=1 | | u+2/3=4 | | 4x-16=14+4x |